Amyloid β Peptide Induces Apoptosis Through P2X7 Cell Death Receptor in Retinal Cells: Modulation by Marine Omega-3 Fatty Acid DHA and EPA

نویسندگان

  • Anaïs Wakx
  • Mélody Dutot
  • France Massicot
  • Frédéric Mascarelli
  • G. Astrid Limb
  • Patrice Rat
چکیده

Retinal Müller glial cells have already been implicated in age-related macular degeneration (AMD). AMD is characterized by accumulation of toxic amyloid-β peptide (Aβ); the question we raise is as follows: is P2X7 receptor, known to play an important role in several degenerative diseases, involved in Aβ toxicity on Müller cells? Retinal Müller glial cells were incubated with Aβ for 48 h. Cell viability was assessed using the alamarBlue assay and cytotoxicity using the lactate dehydrogenase (LDH) release assay. P2X7 receptor expression was highlighted by immunolabeling observed on confocal microscopy and its activation was evaluated by YO-PRO-1 assay. Hoechst 33342 was used to evaluate chromatin condensation, and caspases 8 and 3 activation was assessed using AMC assays. Lipid formulation rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) used in Age-Related Eye Disease Study 2 was incubated on cells for 15 min prior to Aβ incubation. For the first time, we showed that Aβ induced caspase-independent apoptosis through P2X7 receptor activation on our retinal model. DHA and EPA are polyunsaturated fatty acids recommended in food supplement to prevent AMD. We therefore modulated Aβ cytotoxicity using a lipid formulation rich in DHA and EPA to have a better understanding of the results observed in clinical studies. We showed that fish oil rich in EPA and DHA, in combination with a potent P2X7 receptor antagonist, represents an efficient modulator of Aβ toxicity and that P2X7 could be an interesting therapeutic target to prevent AMD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Omega-3 PUFAs induce apoptosis of gastric cancer cells via ADORA1.

Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been suggested to have anti-cancer effects by epidemiological and clinical studies. However, their underlying anti-cancer mechanisms are still unclear. In this study, we examined the influence of two Omega-3 PUFAs (DHA and EPA) on the proliferation and apoptosis of gas...

متن کامل

Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

Methylmercury (MeHg) is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) with MeHg-induced ...

متن کامل

The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability.

Atherosclerosis has an important inflammatory component and acute cardiovascular events can be initiated by inflammatory processes occurring in advanced plaques. Fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or associated with, the fatty acid composition of cell membranes. Human inflammatory cells are typically rich in the n-6 fatty acid arac...

متن کامل

Omega-3 Fatty Acids and Inflammatory Processes

Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are t...

متن کامل

New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

BACKGROUND Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE) cells. METHODS Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM) for 48 hours. Cellular responses were compared to normal glucose (5 mM): intracellular redox status, reactive oxyge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2016